聚乙烯管在输送燃气、给水时要求承受一定的压力,且要求至少50年的寿命,并且保证绝对的安全性,PE管道系统连接技术的优劣,直接关系到管网的运行效果和使用寿命。因此对连接技术的要求就非常严格。
1.2、聚乙烯管道连接技术的发展情况:
聚乙烯燃气管道在熔接技术方面的主要进展有:
1.2.1九十年代电熔连接技术的发展主要体现在:
1)管件的材质紧跟管材材质的发展,国际上已有多家电熔管件制造商开发生产PE100材料的管件。
2)电熔管件的结构经过不断的发展,改进,走向成熟。具有宽的熔接区,较长的插入深度和冷却区。GeorgFisher公司1997年推出了它的模块化设计的电熔鞍形管件和过渡管件系统,实现了由一些基本元件在车间和施工现场组合成所需管件,减少库存,方便应用。
3)电熔连接设备已进入第三代(多功能),可以现场进行熔接质量控制,并且确保设备和安装的可追溯性。
4)电熔管件的自动识别系统可使电能按照一定方式自动输与电熔管件,在九十年代后期,实现了标准化。有三种类型:数字识别系统,机电识别系统和自调节系统。目前大多数电熔管件采用的是数字识别系统,熔接参数以及其它信息以代码的形式记录在条形码、磁卡等数据载体上,熔接控制器从上述载体中读出参数后自动控制熔接。
5)近年电熔管件成型技术最主要的进展是成型的自动化。
1.2.2热熔连接的发展:
热熔对接设备的发展方向是全自动化,不仅可消除人为因素,并且可实现可追溯性。英国燃气公司首先进行研制,主要是针对大口径管子,因为传统机器用于直径大于D315mm的管子时已出现问题。英国、德国、比利时、法国、美国等均已开发半自动、全自动设备。
对聚乙烯管道热熔对接工艺的研究一直在进行。目前一些主要国家(如英国、德国、比利时、芬兰等)聚乙烯管道热熔对接的工艺参数不尽相同,而且由于材料的不断发展,对工艺变化的要求也是必然的。采用比较广泛的熔接工艺是德国焊接协会(DVS)发布的。比利时根特大学对DVS的熔接工艺改变了两个参数:温度由215℃提高到225℃;加热压力降低了50%。并认为压力有进一步降低的可行性。 瑞典排污塑料管质量委员会(KP-Council)根据实际经验的研究认为,冷却时间应进一步延长,特别是对厚壁管材。1993年,英国水研究中心(WRC)提出一种“双压”(dualpressure)连接法用于壁厚大于20mm聚乙烯管的连接。该方法与通常的焊接程序的主要差别在熔接阶段的冷却压力降低。美国天然气研究所(GRI)开发了用于连接和修理聚乙烯天然气输配管线的新方法。该方法使用了一个称为“SmartHeat”的自调、恒温加热的新技术。该技术具有能较好地控制温度,连接件和装配费用低的优点。
1.3聚乙烯连接方式:
PE管不能采用溶解性粘合剂与管件连接,它的最佳连接方式是熔焊连接,焊接技术的发展经历了一定的过程,早期聚乙烯焊接方式有热熔对接连接、热熔承插连接和鞍形焊接。由于热熔承插连接存在一定的缺点,通过对连接技术的不断研究,近来发展了一种新的连接方式—电热熔连接。相应地,采用的施工机具是电热熔焊机和热熔对接焊机,焊接设备应符合ISO12176-1或 ISO12176-2的要求。其次就是与金属管道连接时采用钢塑过渡接头连接。
1.4聚乙烯管道熔接原理:
聚乙烯管道焊接原理是聚乙烯一般在190℃~240℃之间的范围内被熔化(不同原料牌号的熔化温度一般也不相同),此时若将管材(或管件)两熔化的部分充分接触,并施加适当的压力(电熔焊接的压力来源于焊接过程中聚乙烯自身的热膨胀),冷却后便可牢固地融为一体。由于是聚乙烯材料之间的本体熔接,因此接头处的强度与管材的本身的强度相同。
2.连接注意事项:
PE管道连接时应注意如下事项:
1.操作人员上岗前,应经过专门培训,经考试和技术评定合格后,方可上岗操作。
2.管道连接前应对管材、管件进行外观检查,符合产品标准要求方可使用。
3.在寒冷气候(-5℃以下)和大风环境下进行连接操作时,应采取保护措施或调整施工工艺。
4.每次连接完成后,应进行外观质量检验,不符合要求的必须切开返工,返工后重新进行接头外观质量检查。
下载全文