厌氧浮动生物膜反应器处理高浓度有机废水
由上流式厌氧污泥床(UASB)与厌氧过滤器(AF)两种工艺结合的反应器近年来应用较多,其积累微生物能力强,启动速度快,运行中填料上附着的生物膜对降解有机物起着相当的作用,同时可避免滤池堵塞,是一种高效、稳定、易于管理的厌氧处理系统。一般将保留了UASB三相分离器的污泥床加填料的装置称为污泥床过滤器,将不带三相分离器的污泥床—滤层反应器称为厌氧复合床反应器。
本文研究了集AF和UASB为一体的新型装置——厌氧浮动床生物膜反应器(AFBBR)。因其内装有50%体积的悬浮填料,在处理高浓度有机废水的运行中,填料浮在上部,形成了一种底部是污泥床,上部是厌氧滤池的体系。在处理高浓度有机废水试验中显示出处理能力大、效率高的特性。
1 试验材料与方法
1.1 悬浮生物膜填料
FBM用天津市科林思有限公司的聚丙烯材料制成,其密度为0.92kg/m3,可在水中漂浮或随水体流动。该填料形似拉西环,但环内有十字形支撑,外侧沿径向有许多长约0.5mm的芒刺,环的直径为11mm,高度10mm,比表面积约为527m2/m3。
1.2 试验装置及工艺流程
厌氧浮动床生物膜反应器用有机玻璃柱制成,直径14.7cm,总高度100cm,有效高度79.5cm,总容积17.01L,有效容积13.48L。AFBBR内填料的填充率为50%,即FBM占据了一半的有效容积。
AFBBR处理高浓度有机废水试验的工艺流程如图1所示。泵入高位槽的废水经过计量阀由底部进AFBBR,处理后的水由上部排出,在生物降解过程中产生的气体从反应器顶部排出,悬浮在上部的填料由于上向水流和气体的作用而不停地上下浮动或轻微滚动。
2 试验方法
2.1 挂膜与启动
厌氧生物膜反应器存在的一个突出问题是挂膜困难,启动时间长。在本试验中,首先将填料进行好氧预挂膜,利用好氧微生物繁殖快并生成多糖物质的性能,在较短时间内填料表面形成一层生物膜即膜基,改善了填料的表面性能,有利于厌氧微生物的附着、生长、缩短了反应器的启动时间。
好氧污泥取自邯郸市东郊污水厂氧化沟。污泥与填料静态接触24h后,将污 泥全部排掉, 投加生活污水连续运行5~6d后,填料内外表面形成一层均匀生物膜。经好氧预挂膜后的填料与5 L厌氧污泥静态接触24h,然后将污泥排掉,连续投加葡萄糖废水。反应器启动开始采用的有机负荷为2kgCOD/(m3·d),水力负荷为1m3/(m3·d)。2~3d后,好氧膜脱落,填料表面变黑,1周后发现填料内表面形成一薄层生物膜。将水力负荷控制在0.5m 3/(m3·d),有机负荷为1kgCOD/(m3·d),经过2周培养,膜生长均匀良好,COD去除率可达到70%以上。此后,水力负荷增到1m3/(m3·d),进水浓度从2000mg/L逐渐升至6000mg/L,经过50d的运行COD去除率可达到90%以上,反应器底部出现大量0.5mm左右颗粒污泥,AFBBR运行稳定。
2.2 稳定运行试验
在此阶段考察了进水水质、HRT、水力冲击负荷对运行状况的影响,此阶段的运行结果见表1。试验废水为用葡萄糖合成的污水。
在改变进水水质期间,控制HRT基本不变,将进水浓度逐步升高。在HRT变化阶段,保持进水浓度不变,数次改变水力停留时间。最后突然降低HRT,考察反应器在水力冲击负荷下工况的变化。
整个试验在室温下进行,温度变化范围20~28℃。
3 试验结果与分析
3.1 容积负荷与COD去除率
负荷直接反映了食物与微生物之间的平衡关系,容积负荷的变化可以通过改变进水浓度或水力停留时间来实现。在试验中,首先保持停留时间基本不变(平均为23.5h),进水COD浓 度从5327.7mg/L逐渐升高到20140.0mg/L,相应的容积负荷从5.38kgCOD/(m3·d)增到20.62kgCOD/(m3·d),COD去除率随进水浓度增加而缓慢下降,最高达98.5%。之后,将进水浓度控制在14522mg/L,水力 停留时间分别为76.1245.89、32.35、23.11、17.87 h,相应的容积负荷从4.58 kgCOD/(m3·d)增到19.50kgCOD/(m3·d)。COD去除率随水力停留时间的变化存在一个分界点 ,低于此值,COD去除率随水力停留时间减小而迅速下降;高于此值COD去除率基本稳定。由表1可以看到,在试验条件下,当容积负荷增高时,AFBBR的去除[kgCOD去除/(m3·d)]增高,显示了强大的处理能力。
3.2 水力冲击负荷的影响
AFBBR表现出较高的抗冲击负荷特性。在进水浓度为20140mg/L时,水力停留时间突然从23.44h降至3h,冲击时间持续6h,容积负荷增加8倍,达到161.1kgCOD/(m3·d)。反应器在遭到冲击后运行参数的变化见表1,COD去除率变化见图2。在冲击负荷过后3h,COD去除率降到最低33.65%,24h后COD去除率恢复到72%,40h后恢复到80%以上,表明该反 应器具有很大的缓冲能力,抗冲击负荷能力强。这与该反应器的特点有关,该反应器上部悬 浮填料起到过滤器的作用,在负荷冲击时可以防止大量污泥流失,有利于反应器性能的迅速恢复。另一方面填料表面生物膜量仅占总生物量的15%,电子显微镜下观察,其主要是甲烷细菌,因而在冲击负荷下产酸菌虽流失多,但繁殖迅速,有利于反应器迅速恢复正常。另外在反应器遭到冲击负荷后,采取适当的搅拌和污泥回流措施可避免反应器内挥发酸过度积累并稳定反应器内生物量,有利于反应器性能的迅速恢复。
3.3 生物相分析
反应器中微生物由两部分组成:①附着生长在填料上的生物膜;②悬浮污泥在反应器底部形成的颗粒污泥床。试验过程中发现,生物膜主要生长在填料的内表面,外表面上几乎没有生物膜。这可能与填料外层水流紊动大于填料内部,外表面上生物膜受到更大的剪切应力有关。镜检发现生物膜内菌种以甲烷八叠球菌属和杆菌为主,其中甲烷八叠球菌属占视野的50%~60%,没有发现丝状菌,并存在以甲烷八叠球菌属和杆菌分别占优势的区域。同位素示踪已证实消化器中70%以上的甲烷来自乙酸,乙酸型产甲烷细菌主要为产甲烷索氏丝状菌和八叠球菌,而当乙酸浓度高时,甲烷八叠球菌更具有竞争力,这与该反应器出水挥发酸浓度较高相一致。反应器的底部存在颗粒污泥床,污泥床高度为30cm,颗粒粒径0.5~0.7mm,沉降性能良好SV为15%。颗粒污泥中生物相当丰富,以杆菌、球菌、丝状菌、螺菌为主,颗粒污泥与生物膜中的生物存在明显差异。
在稳定运行时,测定反应器微生物总浓度(MLSS)为36.68g/L,其中生长的微生物量占85%,这可能是由于上升水流和产生气体的作用对外表面生物膜生长有影响。
4 结论
①好氧预挂膜显著改变了载体表面性能,有利于厌氧菌的附着、生长,缩短反应器的挂膜时间。
②厌氧浮动床生物膜反应器处理高浓度有机废水,在常温下取得了良好效果。在容积负荷为5.38~20.62 kgCOD/(m?3·d),水力停留时间为0.98d时,COD去除率最高达到98.54%,平均为90.4%。
③厌氧浮动床生物膜反应器内微生物浓度高,活性强,存在悬浮与附着生长的微生物系统,并有其各自的优势菌种。
④厌氧浮动床生物膜反应器缓冲能力大,抗冲击负荷能力强,无堵塞与污泥流失的问题。