简介: 文中采用内径为300mm,高为650mm 的圆柱形SBR 反应器进行试验,探讨SBR 工艺同步硝化反硝化现象及其脱氮效果。SBR 系统采用鼓风曝气,用温控仪控制水温在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,用DO 仪和pH计分别在线判断SBR 反应器的运行状况, 进行研究SBR 系统对有机物和氮的去除过程及其脱氮效果。结果表明:溶解氧浓度控制在 3-5mg/L 时,其同步硝化反硝化现象明显,脱氮效果最佳,总氮去除率可达80%,CODCr 的去除率达 90%。采用同步硝化反硝化脱氮还可以克服污水中碱度不足的现象,由于反硝化不断产生碱度,补充了微生物对有机物和含氮化合物的降解引起水中pH 值下降的过程。当温度在18~25℃的变化区间内,SBR 系统氨氮的去除比较稳定,说明SBR 工艺可实现常温同步硝化反硝化。
关键字:SBR系统 硝化 反硝化 脱氮在反应初期
1. 引 言
脱氮是当今水污染控制领域研究的热点和难点之一,为了高效而经济地去除氮,研究人员开发了许多工艺和方法。根据传统的脱氮理论,同一工艺中不可能同时进行硝化反硝化,然而,最近几年国外有文献报道了同步硝化反硝化现象,尤其是有氧条件下的反硝化现象确实存在于各种不同的生物处理系统中[1],本文针对序批式活性污泥(SBR)工艺中的同步硝化反硝化现象及其脱氮效果进行了研究。
2. 试验材料与方 法
2.1 试验装置
试验所用SBR 反应器为圆柱形,内径为300mm,高为650mm,有效容积为32L。采用鼓风曝气,以转子流量计调节曝气量,用温控仪将反应器内的水温控制在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,并根据需要,选定各段的启动、关闭时间。用DO 仪和pH 计分别在线测定各反应阶段的DO 和pH 值,并根据反应阶段DO 和pH 值的变化判断SBR 反应器的运行状况,及时加以调整。
1.温度控制仪 2.温度传感器 3.DO 测定仪 4.DO 传感器 5. pH 测定仪 6. pH 传感器7.搅拌器 8.取样口 9.压缩空气 10.转子流量计 11. 曝气器 12. 排泥管
图1 SBR 反应器实验装置
2.2 试验用水
本试验采用模拟配水作为进水:CODCr=400-500mg/L,NH3-N=35-45mg/L,TN=50mg/L 左右。模拟配水的水质稳定且易于控制,适合SBR 反应器工艺运行特性和污泥形态结构及微生物学特性等的研究。在试验运行过程中,可根据不同的试验要求,适时调整配水成分,改变部分进水组分的浓度和配比,但TN 和NH3-N 的含量保持基本不变。
3. 试验结果与分析
3.1 溶解氧的影响
溶解氧浓度直接影响到SBR 工艺的硝化反硝化程度,首先,溶解氧浓度应满足碳有机物的氧化以及硝化反应的需要;其次,溶解氧浓度又不宜过高,以保证SBR 工艺中的缺氧厌氧微环境的形成,同时使系统中碳有机物不致于降解过快而影响反硝化碳源。不同的处理工艺发生同步硝化反硝化的范围有所不同,将溶解氧控制在适当的范围内,使硝化速率和反硝化速率越接近,总氮去除效果越好。在试验中溶解氧浓度控制在 3-5mg/L 时,其同步硝化反硝化现象明显,脱氮效果最佳,说明在同步硝化反硝化生物脱氮过程中,曝气量不能太低,否则影响硝化速率并使硝化时间延长,如图2 所示。当溶解氧浓度大于5mg/L 或小于3mg/L 时,脱氮效果及反硝化速率明显降低,说明曝气量也不是越大越好,而应根据所要处理的水质和水量特征选择最佳曝气量。
图2 DO 与TN 去除率之间的关系曲线
3.2 温度的影响
水温也影响SBR 工艺的硝化反硝化程度,试验中控制水温在10~40℃之间变化,当温度在18~25℃的变化区间内SBR 系统的氨氮的积累比较稳定,说明SBR 工艺可实现常温硝化反硝化。
Hellinga 等认为硝化菌属在10~20℃时很活跃,无论游离氨浓度多大,氨氮的积累率都很低,此条件下温度对硝化菌活性的影响比游离氨浓度对其抑制作用大。当温度为20~25℃时硝化反应速率降低而亚硝化反应速率增大。当温度>25℃时游离氨浓度对硝化菌的抑制作用大于温度的作用,可能因游离氨浓度的抑制造成氨氮的积累[2],亚硝化菌在数量上可能形成优势的温度范围为30~34℃。而试验结果表明,SBR 系统在18~25℃实现了同步硝化反硝化并不符合上述文献中的观点,即使温度在18~25℃变化时,SBR 系统仍能实现同步硝化反硝化过程。
3.3 碱度的影响
通过理论计算硝化反应时每氧化1g 氨氮要消耗碱度7.14g(以CaCO3 计)。而反硝化反应时每还原1g 氨氮将释放出3.57g 碱度。同时发生硝化反硝化时,反硝化反应产生的碱度可以随时补充一部分硝化反应消耗的碱度。对硝化反应来说,一般污水中的碱度往往是不足的,需要补充碱度,避免水中的pH 急剧降低,影响氨氮的硝化程度,采用同步硝化反硝化脱氮是可以克服这一不足。在反应初期,微生物对有机物和含氮化合物的降解,引起水中的pH 值有下降的过程,随着氨氮经硝化作用转化为亚硝酸盐氮进入反硝化阶段,由于反硝化不断产生碱度,pH 值下降过程很快结束,然后快速上升。如图3 所示,实测值与模拟碱度之间存在差值,说明了存在有同步硝化反硝化现象。
图3 实测碱度曲线与理论消化反应曲线的关系
3.4 碳氮比的影响
污水的碳氮比影响SBR 系统的脱氮效果,本试验选用三种不同的碳氮比。分别为14,8.5,4.2,考察三种碳氮比条件下CODCr,NH3-N,和TN 的去除过程及脱氮效果。CODCr的去除不受碳氮比的影响,如图4。由于SBR 工艺中的活性污泥有很强的生物吸附功能,所以反应初期能快速吸附大部分的有机物而转换成碳源。
图4 不同碳氮比条件下COD 去除率曲线
以碳氮比为14 为例,(由于反应过程中测得的硝酸盐氮浓度很低,故忽略不计。)由图5 可以看出,在试验中,硝化反应的进行使氨氮比较彻底地转化为硝酸盐氮,氨氮浓度逐渐降低,同时总氮浓度也逐渐降低。由此可见:该反应过程中既发生了硝化反应又发生了反硝化反应,即发生同步硝化反硝化。
图5 碳氮比为14 时氮的去除曲线
由图6 可知,进水碳氮比越高,出水总氮越低,其去除率相应也越高。因此同步硝化反硝化现象随进水碳氮比的提高而越加明显
图6 不同碳氮比条件下总氮去除曲线
4. 分析
对于同步硝化反硝化现象,可以从微环境理论和生物学两方面加以解释,由于微生物种群结构、物质分布和生化反应的不均匀性,在SBR 系统中活性污泥菌胶团内部存在多种微环境类型。由于氧扩散机理的限制,在微生物絮体内产生溶解氧梯度变化,微生物絮体外表面溶解氧较高,以好氧菌、硝化菌为主;微生物絮体内部氧传递受阻及外部氧的大量消耗,产生缺氧区或者厌氧区,反硝化菌占优势。控制SBR 系统内溶解氧的变化,调整缺氧厌氧微环境及好氧微环境所占的比例,从而促进反硝化作用,达到同步硝化反硝化脱氮的目的。由于微生物的代谢活动以及氧气泡的搅动,使得微环境是可变的,甚至是多变的[3]。传统的脱氮理论认为,硝化反应是由自养型好氧微生物完成,而反硝化反应是在缺氧厌氧条件下完成的。但最近几年,已有报道发现了许多异养微生物能够对有机及无机含氮化合物进行硝化作用[4]。与自养硝化菌相比,异养硝化菌生长快,产量高,能忍受较低的溶解氧浓度和较低的pH 值环境,大多数异养硝化菌同时也是好氧反硝化菌[5],这样就解释了同步硝化反硝化现象。
5. 结论
1、在SBR 系统中,将溶解氧控制在3~5mg/L,在保证系统内CODCr 高效去除的前提下,同时取得了较高的脱氮效果。试验结果表明,CODCr 的去除可达90%左右,总氮去除可达80%左右。
2、SBR 工艺可实现常温硝化反硝化,当温度在18~25℃的变化区间内SBR 系统仍能实现同步硝化反硝化过程。
3、对于SBR 工艺来讲,同步硝化反硝化能够降低实现硝化反硝化所需的时间和成本。
4、在溶解氧浓度较高时,经5 小时曝气,总氮的去除率因进水的碳氮比不同而异,总氮去除率随进水CODCr 的提高而提高,表明碳有机物充足时不会成为反硝化的限制因子,对于碳有机物不足的污水,不宜采用同步硝化反硝化工艺。