传统的硝化-反硝化工艺主要适用于低氨氮废水,对于低碳氮比、高氨氮的废水,其达不到理想的处理效果。本文综述了目前常规脱氮技术以及新型脱氮技术的近五年进展,以期为低碳氮比污水的治理提供一定参考.
污水厂进水碳氮比较低,导致现有活性污泥系统对总氮的去除不完全,进而影响出水总氮的达标。首先,需要从现有工艺出发,对进水碳源进行合理分配,提高氮源的利用率。国内多位学者和工程技术人员通过对现有工艺的优化来进一步提升碳源的利用率,主要措施包括合理控制池内不同区域的溶解氧,通过调整不同位置的溶解氧水平,避免进水中的碳源被过快消耗,从而为后续生物脱氮保留足够的碳源。
1.4污泥发酵液应用
1.5多工艺组合
通过传统工艺和生物膜技术的组合工艺,人们可以得到更好的有机物和氨氮的去除效果,多种工艺的组合可以达到较好的耐冲击负荷能力、提高氧的利用率、降低污泥产量。张国珍通过投加悬浮复合填料的方式对多级A/O进行了改良,结果表明,添加填料后进一步提高了脱氮效果。
HuXiang通过缺氧/厌氧/好氧/预缺氧-MBR来处理低C/N的城市生活污水,结果表明,往缺氧区投加外加碳源后,最终NH4-N+、TN去除率分别达到了98.1%、74.9%。吴勇采用多级AO-MBR组合工艺来处理低碳氮比城市污水,通过优化工艺,最终系统出水的氨氮、总氮均值分别为1.39mg/L、12.40mg/L,出水能满足一级A排放标准。
2 新型脱氮技术进展
传统的生物脱氮是一种高能耗、高成本的模式,尤其是对于低碳氮比的污水,碳源不足,脱氮效率会偏低。因此,研究低能耗高效率的脱氮工艺,已经成为当今污水处理领域的研究热点。随着生物信息学和微生物鉴定技术的发展,人们对脱氮机理的认识更加深入,多种新型脱氮理论和工艺应运而生,短程硝化反硝化技术、同步硝化反硝化技术(SND)、同步反硝化脱氮除磷技术、厌氧氨氧化技术以及多种工艺的组合应用,均在21世纪得到了较大的发展,下文将展开论述。
2.1短程硝化反硝化
短程硝化反硝化是将氨氮的硝化反应控制在亚硝酸盐阶段,然后利用亚硝酸盐菌(AOB)进行反硝化.与完全硝化反应相比,短程硝化反硝化具有更快的反硝化速率,缩短了反应过程,可以使反应器容积减少40%左右,同时曝气量降低约25%,碳源需求也得到了降低。
巩秀珍利用SBR反应器,结合后置短程硝化反硝化技术处理低C/N比的城市污水,通过优化曝气量和缺氧停留时间,最终整个反应系统的
2.2同步硝化反硝化技术(SND)
2.3厌氧氨氧化
2.4多种工艺联用
3 结语
传统硝化反硝化工艺主要应用于低氨氮废水,对于低碳氮比的废水达不到理想的处理效果,因此需要对工艺进行优化,常见的有添加碳源、生物膜和现有活性污泥工艺联合处理,以尽可能降低出水的总氮,使其污水达标排放。
而新兴脱氮技术对处理低碳氮比的污水具有较高的脱氮效果,国内外学者和技术人员对亚硝化与厌氧氨氧化等技术进行了研究和实际应用,对脱氮处理效果、降解机理和主要影响因素等进行了研究,以实现低碳氮比废水的高效、低能耗处理,为新技术的推广提供了理论依据。
本文介绍了传统的和新型的脱氮处理技术,以期使科研人员和工程技术人员更全面、更深入地了解低碳氮比废水的处理技术。