介绍: 2.1工程概况 A塔楼地下室部分和1- 5层为劲性砼结构,5层以上为全钢框架结构,平面结构呈回字形,分内框架和外框架两部分。内框筒15×15米,外框筒39.5×39.5米。地下4层,标高为-19.30米,地上63层,建筑高度为249.7米。楼层标准层层高为3.3和3.4米,17层、33层、46层为避难层。顶部58层以上布置金字塔结构,被外周灯笼结构所包围。楼面为钢承板-混凝土组合楼板。 A塔楼钢结构总重量约为二万吨,构件总数量约为19400件;平面内钢柱共59根,有箱型柱12根、工字型柱47根。外框筒四角箱型钢柱EC1规格下部为900*900*100、上部为800*800*50,内框筒四角箱型钢柱IC1规格为900*450*50*50,内框筒内部四根箱型钢柱ICC1、ICC2、ICC3:600*400*60*60。工字型柱规格主要为:1200*440*50*50、900*450*50*50。钢梁大部分为H型,最大为1200*500*30*50,少量为箱型,最大截面为800×800mm×30mm。 本工程框架梁与框架柱之间的连接一般采用刚接,次梁与主梁之间的连接采用铰接,钢柱与钢柱之间的对接采用全熔透坡口焊接。高强螺栓地下室有少量大六角型,地上部分全部为扭剪型。钢材材质主要为Q345B、C、D级T=40~60满足Z15、T>60满足Z25。耐火等级为一级。 2.2施工难点及对策 2.2.1塔吊的选择 100吨起重 2.2.2施工现场平面布置 本工程位于。现场位置比较狭小,如何合理的解决现场平面布置问题是至关重要的。结构施工现场平面布置首先要保证有足够的使用面积堆放数量众多的构件,每天安装的钢结构构件需提前运输到现场,堆场的布置应尽量靠近塔吊,发挥塔吊最大起重性能。 结合本工程情况,构件堆场采用架空钢平台,构件运输通道在北塔楼的南边设置一条通长的5.5米宽的通道。 2.2.3大型构件的安装 大型构件由于超长、超重,钢柱必须分段运输,然后现场进行对接。上部灯笼架大箱梁构件长40米,重约31吨,采取分段制作进场,现场拼装,整体吊装的施工工艺。 2.2.4结构测量控制 钢框架结构的测量技术对钢结构的精度影响至关重要。在整体形成稳定结构前,钢结构需要进行多次的校正和调整,我们采取提前预计偏移趋势,加强临时固定措施和跟踪测量校正等方法进行测量定位和调校。 2.2.5厚钢板焊接 钢结构厚板焊接是本工程的关键工序,高空气流影响、焊接的层间温度、柱接头的预热和后热、焊接应力应变等环节控制,必须要由具有钢结构施工经验的焊工施焊才能完成。安装焊接工程量较大,厚度大,焊接难度比较高,针对此特点,拟运用CO2气体保护半自动焊成套技术,选择熟练有类似工程经验的焊工,解决对厚板焊接变形、厚板方向应力破坏的处理等难题。 2.2.6施工中的结构稳定性 钢结构施工领先于其它工序,钢结构安装过程需考虑结构整体稳定性。对此我部选择先安装内框钢柱,再向外框扩展,相邻钢柱安装后,立即将柱间钢梁安装就位,确保钢框架的整体稳定性。 2.2.8安全施工 钢结构施工中螺栓、栓钉、连接板等小型构件和各种手持工具非常多,钢框架安装过程中柱-柱、梁-梁之间较为空旷,楼层面的有效面积非常狭小,极易产生小构件的坠落事件,构成安全事故。高层施工时的电火花必须进行有效防护。高空设置活动工具房、佩带随身工具包、防护工棚、接火盆等专用工具进行防护,在楼层施工时满铺水平滤网,柱与柱之间拉设安全绳,沿外围四周搭设防护栏杆的方式解决人员的安全防护问题。 第三章 塔吊方案选择 3.1吊装设备选择的基本原则 本工程钢结构施工具有以下几点影响吊装设备的选择: (1)主体结构采用钢框架结构,钢柱分布在内框架和外框架部位。 (2)地下标高为-19.30米,地上标高为249.70米。构件吊装时应充分考虑其垂直运输效率。 (3)内框架的尺寸较为窄小为15米*15米;外框架为39.5米*39.5米,最重的钢柱分布在外框混凝土墙预埋件上。 (4)楼层内钢梁分布较密集,钢梁之间留余的空间均比较小,钢梁数量较多。 (5)钢梁分段的重量,及大型构件的重量。 综合以上对吊车方案选择有影响的因素,结合现场的实际情况,我部选择一台100吨汽车吊作为钢梁及箱式梁的吊装设备。