一单交点对称:
本程序由一个主程序JD和三个子程序(JDA、JDB、JDC)构成,运行时只需运行主程序即可!
本程序适用于单交点对称型、不对称型、有无缓和曲线单圆曲线型一个交点范围内(含交点前后有直线段时)的曲线要素核对和坐标计算,手工输入要素,对设计图纸的“直线、曲线转角表”中交点数据进行复核验证,并为线元法程序提供起点坐标起点切线方位角等数据!当然本程序也可单独逐交点输入进行放样计算用!鉴于5800计算器的空间和以上所述本程序的主要目的,故此程序不修改为数据库版本!需要的自行修改结合XY框架自己修改为数据库反算程序等!
主程序名:JD
24→Dimz↙
Cls :"K(JD)"?K :"X(JD)"?X :
"Y(JD)"?Y :"LS1"?B :"LS2"?C : ?R :
"(ZH)FWJ"?M : "α(Z-,Y+)"?O : M+O→N :
Prog "JDA"↙
Cls :"T1=":"T2=":"L=":"LY=": Locate 4,1,S : Locate 4,2,T : Locate 4,3,L : Locate 4,4,Q◢
Cls :"E=":"K(ZH)=": Locate 7,1,E : Locate 7,2,Z[1] ◢
Cls : "K(HY)=":"K(QZ)=":"K(YH)=":"K(HZ)=": Locate 7,1, Z[2] : Locate 7,2, Z[3] : Locate 7,3, Z[4] : Locate 7,4, Z[5] ◢◢
LbI 0 : "JSLC"?P : "(-L,Z=0,+R)"?D : If D≠0 :Then "RJ"?H : IfEnd : Prog "JDB"↙
If D<0 :Then Cls : "X(L)=":"Y(L)=": Locate 6,1,F : Locate 6,2,G◢◢
Goto 0 : IfEnd↙
If D=0 :Then Cls : "X(Z)=":"Y(Z)=": Locate 6,1,F : Locate 6,2,G ◢
"QXFWJ(Z)=": Z▼DMS◢
Goto 0 : IfEnd↙
If D>0 :Then Cls : "X(R)=":"Y(R)=": Locate 6,1,F : Locate 6,2,G◢
Goto 0 : IfEnd↙
子程序1名: JDA
If O<0 :Then -1→W : Else 1→W : IfEnd : WO→A ↙
B2 ÷24÷R-B^(4)÷2688÷R ^(3) →Z[6] ↙
C2 ÷24÷R-C^(4)÷2688÷R ^(3) →Z[7] ↙
B÷2-B^(3)÷240÷R2 →Z[8] ↙
C÷2-C^(3)÷240÷R2 →Z[9] ↙
Z[8]+((R+Z[7]-(R+Z[6])cos(A))÷sin(A))→S↙
Z[9]+((R+Z[6]-(R+Z[7])cos(A))÷sin(A))→T↙
RAπ÷180+(B+C) ÷2→L↙
RAπ÷180-(B+C) ÷2→Q↙
(R+(Z[6]+Z[7])÷2)÷cos(A÷2)-R→E↙
K-S→Z[1] ↙↙
Z[1]+B→Z[2] ↙↙
Z[2]+Q÷2→Z[3]↙
Z[1]+L-C→Z[4]↙
Z[4]+C→Z[5]↙
子程序2名: JDB
X-Scos(M)→Z[19]:
Y-Ssin(M)→Z[20]↙
X+Tcos(N)→Z[21]:
Y+Tsin(N)→Z[22]↙
If P>Z[1]:Then Goto 1 :IfEnd↙
Z[1]-P→L↙
X-(S+L)cos(M)+Dcos(Z+H)→F↙
Y-(S+L)sin(M)+Dsin(Z+H)→G↙
M→Z : Goto 5↙
LbI 1 : If P>Z[2]:Then Goto 2 :IfEnd↙
P-Z[1]→L:L→Z[12]:B→Z[13]:Prog"JDC"↙
Z[19]+Z[14]cos(M)-WZ[15]sin(M)+Dcos(Z+H)→F↙
Z[20]+Z[14]sin(M)+WZ[15]cos(M)+Dsin(Z+H)→G↙
M+90WL2 ÷(BRπ)→Z↙
Goto 5↙
LbI 2 : If P>Z[4]:Then Goto 3 :IfEnd↙
P-Z[1]→L:90(2L-B)÷R÷π→Z[11]↙
Rsin(Z[11])+Z[8]→Z[14]:R(1-cos(Z[11]))+Z[6]→Z[15]↙
Z[19]+Z[14]cos(M)-WZ[15]sin(M)+Dcos(Z+H)→F↙
Z[20]+Z[14]sin(M)+WZ[15]cos(M)+Dsin(Z+H)→G↙
M+WZ[11]→Z↙
Goto 5↙
LbI 3 : If P>Z[5]:Then Goto 4 :IfEnd↙
Z[5]-P→L:L→Z[12]:C→Z[13]:Prog"JDC"↙
Z[21]-Z[14]cos(N)-WZ[15]sin(N)+Dcos(Z+H)→F↙
Z[22]-Z[14]sin(N)+WZ[15]cos(N)+Dsin(Z+H)→G↙
N-90WL2 ÷(CRπ)→Z↙
Goto 5↙
LbI 4 : P-Z[5]→L↙
X+(T+L)cos(N)+Dcos(Z+H)→F↙
Y+(T+L)sin(N)+Dsin(Z+H)→G↙
N→Z↙
Goto 5↙
LbI 5 : 360Frac((Z+360)÷360)→Z↙
子程序3名: JDC
If Z[12]=0 :Then 0→Z[14]: 0→Z[15]:Else↙
Z[12]- Z[12]^(5)÷40÷(RZ[13])2+ Z[12]^(9)÷3456÷(RZ[13])^(4) →Z[14]↙
Z[12]^(3)÷6÷(RZ[13])-Z[12]^(7)÷336÷(RZ[13])^(3)+ Z[12]^(11) ÷42240÷(RZ[13])^(5)→Z[15] ↙
IfEnd↙
程序说明:
已知数据输入:
XC ? 测站X坐标
YC ? 测站Y坐标
K(JD)?交点桩号
X(JD)?交点X坐标
Y(JD)?交点Y坐标
LS1 ?第一缓和曲线长度
LS2 ?第二缓和曲线长度
R ? 圆曲线半径
(ZH)FWJ°?交点前(即前交点至本交点也即ZH点)的正切线方位角
α(Z-,Y+)?本交点处线路转角(左转为负,右转为正,度分秒输入)
K×+×××? 待求桩号
Z ?待求桩号距中距离(左负值,右正值,中为0)
RJ ?斜交右角(线路切线前进方向与边桩右侧夹角)
计算结果显示:
T1=第一切线长
T2=第二切线长
L=曲线总长
LY=圆曲线长
E=曲线外距
K(ZH)=直缓点桩号
K(HY)=缓圆点桩号
K(QZ)=曲中点桩号
K(YH)=圆缓点桩号
K(HZ)=缓直点桩号
X= Y=待求点的坐标(其中:L-左 Z-中 R-右)
QXFWJ(Z)=待求点的中桩切线方位角(当求中桩坐标时显示)
二非对称线路坐标正反算通用程序(中边桩)
GAUSSLE坐标正反算fx-5800程序
源程序
1.正算主程序
Lbi 0:“G”?K:“Z=-1,Q=0,Y=1”?A
If A=-1:Then Prog “ZX”:Prog “GSZS”:IfEnd
If A=1:Then Prog “YX”:Prog “GSZS”:IfEnd
If A=0:Then Prog “QX”:Prog “GSZS”:IfEnd
“X=”:X◢
”Y=”:Y◢
Goto 0
说明:
K 正算时所求点的里程
A 选择线路,左幅=-1,右幅=1,整体式=0
正算子程序 GSZS
((P-R)÷(2(H-O)PR))→D:
“JIAODU”?M:”JULI(-Z +Y)” ?L
(Abs(K-O)) →J:Prog"SUB1":
(F-M) →F
Return
2. 反算主程序 GSFS
Lbi 0:?X:?Y:X→Z[2]:Y→Z[3]:
“QDXO”?I:"QDY0"?S:"QDLC"?O:"QDFWJ "?G:"ZDLC"?H:"QDR"?P:"ZDR"?R:”Q(Z=-1 ZX=0 Y=1)” ?Q:
( (P-R)÷(2(H-O)PR)) →D:
(Abs((Y-S)cos(G-90)-(X-I)sin(G-90)) ) →J:
0→L:90→M:
Lbl 1:Prog "SUB1":
((Z[3]-Y)cos(G-90+QJ(1÷P+JD)×180÷π)-(Z[2]-X)sin(G-90+QJ(1÷P +JD) ×180÷π)) →L:
If:AbsL<10-6 Then Goto2:Else J+L→J:Goto 1:←┘
Lbl 2:0→L:Prog "SUB1":((Z[3]-Y)÷sinF)→L:
”K=”: O+J→k◢”L=”:L→L◢
Goto 0
3. 反算,正算子程序(SUB1)
0.1184634425→A:0.2393143352→B: 0.2844444444→Z[4]:0.0469100770→C: 0.2307653449→E: 0.5→Z[1]:
(I+J(Acos(G+QCJ(1÷P+CJD)×180÷π)+Bcos(G+QEJ(1÷P+EJD)×180÷π)+Z[4]cos(G+QZ[1]J(1÷P+Z[1]JD)×180÷π)+Bcos(G+Q(1-E)J(1÷P+(1-E)JD)×180÷π)+Acos(G+Q (1-C)J(1÷P+(1-C)JD) ×180÷π))) →X:
(S+J(Asin(G+QCJ(1÷P+CJD)×180÷π)+Bsin(G+QEJ(1÷P+EJD)×180÷π)+Z[4]sin(G+QZ[1]J(1÷P+Z[1]JD)×180÷π)+Bsin(G+Q(1-E)J(1÷P+(1-E)JD)×180÷π)+Asin(G+Q (1-C)J(1÷P+(1-C)JD) ×180÷π))) →Y:
(G+QJ(1÷P+JD) ×180÷π+M) →F: (X+LcosF)→X:(Y+LsinF) →Y
4. 曲线元要素数据库:ZX/YX/QX
If K<(起点里程):Then Goto 2:IfEnd
If K<( ZDLC): Then QDXO →I:QDY0→S:QDLC→O:QDFWJ →G:ZDLC→H:QDR→P:ZDR→R:Q(Z=-1 ZX=0 Y=1)→Q: Goto 3:IfEnd
……….(注:如有多个曲线元要素继续添加入数据库ZX/YX/QX中)
Lbl 2:”NO”
Lbl 3:Return
说明:
一、程序功能及原理
1.功能说明:
本程序由两个主程序——正算主程序(GSZS)、反算主程序(GSFS)和两个子程——正算子程序(SUB1)、线元数据库(DAT-M)构成,可以根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、终点里程、起点曲率半径、止点曲率半径)及里程边距或坐标,对该曲线段范围内任意里程中边桩坐标进行正反算。本程序可以在CASIO fx-4800P计算器及 CASIO fx-4850P计算器上运行。由于加入了数据库(DAT-M),可实现坐标正反算的全线贯通。
组合程序5可实现M线的正算贯通,组合程序7可实现M线的反算贯通,组合程序6可实现坐标计算到放样一体化。
2.计算原理:
利用待求点至线元起点切线作垂线,逐次迭代趋近原理反算里程及边距。
二、使用说明
1、规定
(1) 以道路中线的前进方向(即里程增大的方向)区分左右;当线元往左偏时, Q=-1;当线元往右偏时,Q=1;当线元为直线时,Q=0。
(2) 当所求点位于中线时,L=0;当位于中线左侧时,L取负值;当位于中线右侧时,L取正值。
3) 当线元为直线时,其起点、止点的曲率半径为无穷大,以10的45次代替。
(4) 当线元为圆曲线时,无论其起点、止点与什么线元相接,其曲率半径均等于圆弧的半径。
(5) 当线元为完整缓和曲线时,起点与直线相接时,曲率半径为无穷大,以10的45次代替;与圆曲线相接时,曲率半径等于圆曲线的半径。止点与直线相接时,曲率半径为无穷大,以10的45次代替;与圆曲线相接时,曲率半径等于圆曲线的半径。
(6) 当线元为非完整缓和曲线时,起点与直线相接时,曲率半径等于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。止点与直线相接时,曲率半径等于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。
(7)曲线元要素数据库(DAT-M)可根据线型不同分为各个线元段输入到DAT-M中,即分为直线段、缓和曲线、圆曲线等。
(8)正算时可仅输入里程和边距及右交角可实现全线计算,但反算时只能通过首先输入里程K值读取数据库DAT-M,计算器自动将里程K所在线元数据赋给反算主程序GSFS进行试算,试算出的里程和边距须带入正算主程序GSZS中计算坐标,若坐标吻合则反算正确。
2、输入与显示说明
(1)输入部分:
QDX0 ?线元起点的X坐标
QDY0 ?线元起点的Y坐标
QDK0 ?线元起点里程
QDFWJ ?线元起点切线方位角
ZDLC ?线元终点里程
QDR ?线元起点曲率半径
ZDR?线元止点曲率半径
Q ? 线 元左右偏标志(左偏Q=-1,右偏Q=1,直线段Q=0)
K ? 正算时所求点的里程
L ? 正算时所求点距中线的边距(左侧取负值,右侧取正值,在中线上取零)
ANG?正算边桩时左右边桩连线与线路中线的右交角
X ? 反算时所求点的X坐标
Y ? 反算时所求点的Y坐标
M ? 斜交右角
(2)显示部分
X正算时,计算得出的所求点的X坐标
Y正算时,计算得出的所求点的Y坐标
K反算时,计算得出的所求点的里程
L反算时,计算得出的所求点的边距
三、算例
某匝道的由五段线元(直线+完整缓和曲线+圆曲线+非完整缓和曲线+直线)组成,各段线元的要素(起点里程S0、起点坐标X0 Y0、起点切线方位角F0、线元长度LS、起点曲率半径R0、止点曲率半径RN、线元左右偏标志Q)如下:
S0 X0 Y0 F0 LS R0 RN Q
500.000 19942.837 28343.561 125 16 31.00 269.256 1E45 1E45 0
769.256 19787.340 28563.378 125 16 31.00 37.492 1E45 221.75 -1
806.748 19766.566 28594.574 120 25 54.07 112.779 221.75 221.75 -1
919.527 19736.072 28701.893 91 17 30.63 80.285 221.75 9579.228 -1
999.812 19744.038 28781.659 80 40 50.00 100.000 1E45 1E45 0
(注:该算例中线元要素Ls为程序修改前须输入的线元长度,程序修改后改为输入线元终点里程KN)