摘要:大量废弃物正在被有增无减地排入全球的水体中,人口的增长,农业上所需的大量化肥和杀虫剂,食品工业的扩大,以及其他工业化进程的增长都导致了污水和废水量的增加,同时,也增加了污水和废水中废弃物的种类。本文以混合化工废水的特点为出发点,并结合该领域常用的处理工艺,进一步对混合化工废水进行优化处理工艺的研究。
关键词:混合化工 废水 优化 处理工艺
随着工业的迅速发展,工业废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全,因此工业废水的处理显得尤为重要。本文所研究的混合化工废水,主要是针对化工工业园区而言,指园区内多种类型化工企业(如农药、医药、燃料、印染等)在其工业生产过程中产生大量废水,这些废水经预处理后集中排入污水处理厂中,便形成混合型化工废水,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的各类污染物。这类混合化工废水存在着污染种类多、毒害性强、成分复杂、可生化性差等突出特点。一方面,由于工业化生产的规模较大,这些排入污水处理厂的混合化工废水的量非常大,并且由于来源于不同化工企业,这些废水的水质成分较为复杂,水质波动也较大;另一方面,这些混合化工废水在进入污水处理厂之前虽经过了各企业的预处理,但是,由于这些混合化工废水的成分过于复杂,经预处理进入污水处理厂的废水仍然存在着色度深、盐度和氨氮含量高、可生化性低等工艺处理难点。
研究表明,混合化工废水的处理工艺可分为物理、化学、生物方法三类:(1)物理处理法:利用物理的方法对混合化工废水进行处理,主要的目的是将废水中的不溶性悬浮颗粒物分离去除。(2)化学处理法:化学处理法包括对酸碱废水、重金属废水的处理,酸碱废水的处理分为酸性废水处理和碱性废水处理。 (3)生物处理法:利用微生物的生化作用处理废水中的有机物,把有机物进行氧化、分解,从而使有机物转化降解成无机盐而得到净化。具体分为耗氧生物、厌氧生物、自然生物处理法三种,其废水处理的主要问题是除去下列成分:①含高生化氧需求量的化合物;②病原微生物和病毒;③众多的人造化合物。
一般而言,混合化工废水进入工厂后,典型的处理过程包括:一、废水的初级处理过程,即通过一系列格栅或格网,除去较大杂物,之后废水中可沉淀的固体颗粒在通过初沉淀池时,在缓慢的水流中沉降下来。接着,流水进入沉淀池。二、废水的次级处理,即微生物学过程,指在废水处理过程中利用各种细菌和真菌的降解能力,使沉淀池中的上清液,包括溶解的有机物,在曝气池中进行微生物氧化。池中的沉淀物则被转到厌氧消化池中,在不同微生物种群的作用下进行特殊分解。经过一段时间的微生物氧化,曝气池流出液将进入第二级沉淀池,这里的沉淀物将转到厌氧消化池。第二级澄清池中的上清液可释放到自然水体中,但是这种水还包含高浓度的无机营养磷酸盐和硝酸盐。三、废水的三级处理,该过程用来防止水体富营养化(磷和硝酸盐的排放,使细菌和藻类大量迅速繁殖,结果导致水中的溶解氧减少),即通过化学沉淀除去磷酸盐和硝酸盐,再通氯气或紫外光对水进行消毒,从而使处理水达到更好的处理效果。结合对上述传统的混合化工废水处理工艺的研究,笔者在综合调查的基础上对混合化工废水特性及污水处理厂处理工艺运行状况进行了进一步的分析和探讨,得出以下工艺优化措施。
(1)合理延长水力停留时间(HRT)。混合化工废水优化处理工艺研究的首要目的是解决工业区污水处理厂混合化工废水处理的达标问题,即进水COD(化学需氧量)在800mg/L以下时,出水低于100mg/L。并有试验表明,水力停留时间(HRT)是影响处理效果的主要因素之一,并且随着HRT的不断增加增加,混合化工废水中COD去除率呈上升趋势。另外,延长HRT,可提高处理系统抵抗冲击负荷的能力,并有利于出水水质的稳定。
(2)选用好氧悬浮填料生物膜法作为完善混合化工处理废水系统中的SBR生化处理系统的工艺。研究表明,同样容积的好氧悬浮填料生物膜工艺和传统SBR工艺在同等条件下进行对比试验,结果表明,前者对混合化工废水中有机物的去除具有明显的优势,并且在出水水质稳定、冲击负荷相同的条件下,好氧悬浮填料生物膜反应器具有更为优异的抗冲击负荷的能力,对混合化工废水的无规则波动有着极强的耐受性,能很快适应环境条件的变化,并且在经受大量废水的强力冲击后,恢复迅速。
(3)应尽可能地用更易降解的化合物代替生物降解慢的化合物。许多人造有机物,在污水处理的过程中被降解,降解程度主要依赖于化合物生物降解的速度。如果速度慢,化合物在污水处理厂的停留时间太短以致于不能完全降解,好氧和厌氧污水处理池中,复杂的微生物种群能降解天然化合物,也能降解合成化合物。实际中,大量化工工业合成的废弃物(如酚类和氯苯)的降解事实,已显示出在大量活性污泥存在下生物降解的高效性。然而,进行现实条件下生物降解能力的研究却至关重要,因为只证明化合物具备可生物降解的能力,这是不够的,还必须让该化合物在处理设备中快速降解以保证它能很快从环境中消除。这就要求在各类化工生产工艺流程中,应尽可能地用更易降解的化合物代替生物降解慢的化合物。
(4)加强化工废水污染防治的措施。优化混合化工废水的处理工艺自然是废水处理工作的重中之重,然而与此同时,加强化工废水污染防治的措施亦是必不可少。首先应改革生产工艺和设备,减少污染物,减少废水外排,加强进行综合利用和回收的效率;其次,必须外排的废水,其处理程度应严格根据水质和要求进行选择;最后,在各企业将废水排入污水处理厂前进行预处理时,各种化学工业废水必须根据不同的水质、水量,合理选用不同的处理方法,例如,造纸工业废水的处理应着重于提高水循环利用率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。
总之,由于混合化工废水含有不同的化工企业排放的污水,其水质存在着较大差异,有害物质不仅含量多而且种类复杂,如果单纯采用传统的工业废水处理工艺,污水处理效果多差强人意。因此,进行混合化工废水优化处理工艺的研究,对混合污水处理工艺的长远发展,具有重要的现实意义。
参考文献:
[1]梁世中.生物工程设备[M].北京:中国轻工业出版社.2011年.
[2]周德庆.微生物学教程[M].北京:高等教育出版社.2012年.
[3][美]A.N.格拉泽,二介堂弘.微生物生物技术[M].北京:科学出版社.2009年.
[4]武彦巍,买文宁. Fenton氧化-曝气生物滤池处理纤维板废水的试验研究[J]. 水处理技术, 2011年04期.
[5]左鸣.电镀废水处理工艺优化研究[D].华南理工大学,2012年.
关键词:混合化工 废水 优化 处理工艺
随着工业的迅速发展,工业废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全,因此工业废水的处理显得尤为重要。本文所研究的混合化工废水,主要是针对化工工业园区而言,指园区内多种类型化工企业(如农药、医药、燃料、印染等)在其工业生产过程中产生大量废水,这些废水经预处理后集中排入污水处理厂中,便形成混合型化工废水,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的各类污染物。这类混合化工废水存在着污染种类多、毒害性强、成分复杂、可生化性差等突出特点。一方面,由于工业化生产的规模较大,这些排入污水处理厂的混合化工废水的量非常大,并且由于来源于不同化工企业,这些废水的水质成分较为复杂,水质波动也较大;另一方面,这些混合化工废水在进入污水处理厂之前虽经过了各企业的预处理,但是,由于这些混合化工废水的成分过于复杂,经预处理进入污水处理厂的废水仍然存在着色度深、盐度和氨氮含量高、可生化性低等工艺处理难点。
研究表明,混合化工废水的处理工艺可分为物理、化学、生物方法三类:(1)物理处理法:利用物理的方法对混合化工废水进行处理,主要的目的是将废水中的不溶性悬浮颗粒物分离去除。(2)化学处理法:化学处理法包括对酸碱废水、重金属废水的处理,酸碱废水的处理分为酸性废水处理和碱性废水处理。 (3)生物处理法:利用微生物的生化作用处理废水中的有机物,把有机物进行氧化、分解,从而使有机物转化降解成无机盐而得到净化。具体分为耗氧生物、厌氧生物、自然生物处理法三种,其废水处理的主要问题是除去下列成分:①含高生化氧需求量的化合物;②病原微生物和病毒;③众多的人造化合物。
一般而言,混合化工废水进入工厂后,典型的处理过程包括:一、废水的初级处理过程,即通过一系列格栅或格网,除去较大杂物,之后废水中可沉淀的固体颗粒在通过初沉淀池时,在缓慢的水流中沉降下来。接着,流水进入沉淀池。二、废水的次级处理,即微生物学过程,指在废水处理过程中利用各种细菌和真菌的降解能力,使沉淀池中的上清液,包括溶解的有机物,在曝气池中进行微生物氧化。池中的沉淀物则被转到厌氧消化池中,在不同微生物种群的作用下进行特殊分解。经过一段时间的微生物氧化,曝气池流出液将进入第二级沉淀池,这里的沉淀物将转到厌氧消化池。第二级澄清池中的上清液可释放到自然水体中,但是这种水还包含高浓度的无机营养磷酸盐和硝酸盐。三、废水的三级处理,该过程用来防止水体富营养化(磷和硝酸盐的排放,使细菌和藻类大量迅速繁殖,结果导致水中的溶解氧减少),即通过化学沉淀除去磷酸盐和硝酸盐,再通氯气或紫外光对水进行消毒,从而使处理水达到更好的处理效果。结合对上述传统的混合化工废水处理工艺的研究,笔者在综合调查的基础上对混合化工废水特性及污水处理厂处理工艺运行状况进行了进一步的分析和探讨,得出以下工艺优化措施。
(1)合理延长水力停留时间(HRT)。混合化工废水优化处理工艺研究的首要目的是解决工业区污水处理厂混合化工废水处理的达标问题,即进水COD(化学需氧量)在800mg/L以下时,出水低于100mg/L。并有试验表明,水力停留时间(HRT)是影响处理效果的主要因素之一,并且随着HRT的不断增加增加,混合化工废水中COD去除率呈上升趋势。另外,延长HRT,可提高处理系统抵抗冲击负荷的能力,并有利于出水水质的稳定。
(2)选用好氧悬浮填料生物膜法作为完善混合化工处理废水系统中的SBR生化处理系统的工艺。研究表明,同样容积的好氧悬浮填料生物膜工艺和传统SBR工艺在同等条件下进行对比试验,结果表明,前者对混合化工废水中有机物的去除具有明显的优势,并且在出水水质稳定、冲击负荷相同的条件下,好氧悬浮填料生物膜反应器具有更为优异的抗冲击负荷的能力,对混合化工废水的无规则波动有着极强的耐受性,能很快适应环境条件的变化,并且在经受大量废水的强力冲击后,恢复迅速。
(3)应尽可能地用更易降解的化合物代替生物降解慢的化合物。许多人造有机物,在污水处理的过程中被降解,降解程度主要依赖于化合物生物降解的速度。如果速度慢,化合物在污水处理厂的停留时间太短以致于不能完全降解,好氧和厌氧污水处理池中,复杂的微生物种群能降解天然化合物,也能降解合成化合物。实际中,大量化工工业合成的废弃物(如酚类和氯苯)的降解事实,已显示出在大量活性污泥存在下生物降解的高效性。然而,进行现实条件下生物降解能力的研究却至关重要,因为只证明化合物具备可生物降解的能力,这是不够的,还必须让该化合物在处理设备中快速降解以保证它能很快从环境中消除。这就要求在各类化工生产工艺流程中,应尽可能地用更易降解的化合物代替生物降解慢的化合物。
(4)加强化工废水污染防治的措施。优化混合化工废水的处理工艺自然是废水处理工作的重中之重,然而与此同时,加强化工废水污染防治的措施亦是必不可少。首先应改革生产工艺和设备,减少污染物,减少废水外排,加强进行综合利用和回收的效率;其次,必须外排的废水,其处理程度应严格根据水质和要求进行选择;最后,在各企业将废水排入污水处理厂前进行预处理时,各种化学工业废水必须根据不同的水质、水量,合理选用不同的处理方法,例如,造纸工业废水的处理应着重于提高水循环利用率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。
总之,由于混合化工废水含有不同的化工企业排放的污水,其水质存在着较大差异,有害物质不仅含量多而且种类复杂,如果单纯采用传统的工业废水处理工艺,污水处理效果多差强人意。因此,进行混合化工废水优化处理工艺的研究,对混合污水处理工艺的长远发展,具有重要的现实意义。
参考文献:
[1]梁世中.生物工程设备[M].北京:中国轻工业出版社.2011年.
[2]周德庆.微生物学教程[M].北京:高等教育出版社.2012年.
[3][美]A.N.格拉泽,二介堂弘.微生物生物技术[M].北京:科学出版社.2009年.
[4]武彦巍,买文宁. Fenton氧化-曝气生物滤池处理纤维板废水的试验研究[J]. 水处理技术, 2011年04期.
[5]左鸣.电镀废水处理工艺优化研究[D].华南理工大学,2012年.