介绍: 污泥热干化在美国的迅速发展始于20世纪90年代,且污泥热干化设备的使用基本集中于美国的东岸地区。热干化设备仅用于生产干固体,无论其最终出路是填埋还是市场销售,那些用于降低污泥含水率、最终污泥被焚烧的设备并未包括在内。 2 热干化技术的进展[2] 虽然污泥热干化早于20世纪40年代已有应用,但真正成熟地大规模应用于市政污泥处置是在90年代,在此之前多数的干化设备是为处理工业污泥设计的。相对于工业污泥而言,市政污泥中的水分较难蒸发,污泥易粘结,在干化过程中存在粘结相,湿污泥不稳定、储存时易消化产生沼气,干污泥和粉尘可燃、给生产和储存带来自燃和爆炸等安全隐患。经过10年的不断改进,其设备性能也逐步得到完善。2.1 直接加热干燥技术 在1995年以前投入使用的18套设备中,有9套采用直接加热转鼓式干燥工艺,其中主要是由E nviro—Grop研发的ESP工艺。ESP工艺的设备包括一个3通道式转鼓干燥器、燃气热风炉和干泥返混系统(包括筛网和粉碎机用于筛分和粉碎大颗粒,并将粉尘送回进料口与脱水污泥混合)。在返混过程中干污泥颗粒起着“晶核”的作用,湿污泥包裹在干泥颗粒外面形成大颗粒,并将进料的含水率降到30%~40%,直接克服了污泥的粘结。由于只是外层的湿泥需要干燥,所以污泥的干燥性能得到改善,可得到稳定的球形颗粒产品。 ESP工艺将热风导入转鼓,蒸发污泥中的水分并带走干颗粒。由于ESP系统的热风量大,尾气热氧化除臭处理的费用使污泥干化费用增加,这使人们逐渐将兴趣转向间接加热系统,后者的风量只需能把水蒸气带出干燥器即可,因而尾气量要小得多。该时期的18套设备中有6套间接加热系统,其中只有1套(Baltimore Back River 的Seghers干燥设备)带有干料返混系统,其余5套在实际运行中都遇到了由于污泥的粘结导致干燥器内部磨损严重和难以生产出颗粒产品的问题,有3套不久就停产了。