介绍: 水利枢纽位于柳河干流上的松涛峡,系一级建筑物,由河床混凝土重力坝、右岸溢洪道和土坝及坝后厂房等部分组成。枢纽主要任务是发电,共装三台机组,每台机组150×103kW,发电的最低水位为500米,相应库容19.5亿米3。 枢纽右岸适当位置布置有排砂放空洞,可满足封孔蓄水期对下游供水100m3/s流量的要求。 1.2 施工条件 1.2.1 工程地质条件 坝区为高山峡谷区。狭谷由震旦纪变质岩构成,其上部为第四纪砾石岩,含砂砾石层及黄土。柳河流向,在坝址附近转为S260°W,河谷呈弯曲形。河谷两岸变质岩顶板出露标高,左岸约520米,右岸约515米。在标高515米时,谷宽约135米,坝址左右岸基岩上直接为黄土覆盖。 坝址区及上下游河床覆盖层厚5-12米。表面0.3米左右为黄土覆盖,以下均由卵砾石夹粗、中砂等物构成。河床靠右岸有一深槽,顺河呈长条状分布,深槽处水深约10米,覆盖层厚10-12米,此深槽系河水沿构造裂隙侵蚀冲刷而成。坝址河谷及两岸的变质岩主要由云母石英片岩和角闪岩组成,石质坚硬,相当于16级岩石分类中的第X级岩石,普氏系数f=8云母石英片岩极限抗压强度为1000~1200公斤/厘米2,角闪片岩极限抗压强度为900~1200公斤/厘米2。 坝址右岸距河边480米处,有一天然冲刷的鞍状地形,溢洪道即建此处,该处系古河道的遗址,两侧有大小冲沟数条,与它成70°~80°交角。 此坝址处水文地质情况,地下水属裂隙补给水,数量很少,主要在构造裂隙及局部破碎带内。在坝区变质页岩中还有裂隙承压水,稳定水位432~446米,单宽涌水量一般为3升/分,最大为120升/分,随岩石裂隙发育程度、连通情况和深度而变化。 松涛是地震波及区,据上级主管部门提出的松涛水利枢纽地段的地震基本烈度为7度。 坝址上、下游均有砂石材料。特别是坝址下游藏量丰富,开采运输比较方便,质量一般皆符合要求,只有砂质土尚未找到理想的产地,必要时可以采用两岸的黄土代替。 1.2.2 施工场地及运输条件 1.2.2.1 施工场地 坝址距下游的仙州市河道长约100公里,直线距离约50公里,坝址附近皆为高山峡谷地区。松涛峡长约12公里,上下游均有比较平坦的山间盆地,可作为施工场地。 枢纽选定坝址位于峡谷尾部,距峡谷出口约1.7公里,坝区河床两岸山坡陡峻,成V字形。左岸坡度45°~80°,陡缓相间;右岸坡度60°~85°,两岸山顶均为黄土覆盖。 坝址河床高程一般为410米,枯水季一般水位为418米,河面宽50~60米,深槽偏右岸,最深约10米。坝址左岸山峰起伏高出河面约150米以上。右岸坝头附近为一狭小丘陵阶地,高出河面约110米左右。与坝区阶地相连的就是地形平坦面积宽阔的李家台四级阶地,高程560~580米。 自峡谷出口起,两岸地势逐渐开阔,呈狭长的二级阶地,高程约430~440米,沿柳河右岸距坝址约8公里的旧镇,附近有宽阔平坦的二级阶地。 坝内河谷两岸有很多冲沟,左岸主要有坝址下游200米处的滑沟;右岸主要有坝址上游150米处的红柳沟,下游的刘家沟、金沟和银沟等。这些冲沟切割既深且短,均系沿断层及节理裂隙发育而成,与河谷多成70°~80°的交角。由于这些冲沟的切割,使坝区地形变得非常复杂,给施工场地布置造成一定困难。 坝区附近可供施工场地布置的地段,有右岸李家沟,峡谷出口下游右岸的明坝和左岸的易家湾等阶地。 1.2.2.2 运输条件 仙州到松涛的公路线为六级公路,已建成通车,路线全长约50公里。对于水路交通,因柳河上游为峡谷,河窄水急,不能通行船只。有国家铁路干线通过仙州市,可沿柳河岸边进工地。 1.2.3 水文气象 1.2.3.1 流量 柳河的年最小流量多发生在1、2月份,3月份上游开始融雪化冰,流量渐增,6月份以后即进入汛期。年最大流量一般发生在7~9月间。 坝址区实测最大流量为5640米3/秒,最小流量为205米3/秒,多年平均流量为830米3/秒;河水含沙量最大达5公斤/米3(7~9月),最小为0.01公斤/米3(1~2月)。峡内流速最大为7米/秒,最小为0.8米/秒。 1.2.3.2 气温 本区为大陆性气候。多年平均温度为9.6℃,月平均最高温度为22.9℃,最低为-6.5℃;绝对最高为39.1℃,绝对最低为-23.1℃,日最小变幅1.3℃。坝址附近历年气温观测统计资料,如表3所示。 本地区雨量稀少,年平均降水量为330.1毫米,最大达471.9毫米,其中60~70%集中在7~9月,最大日降雨量为71.8毫米。最长一次降水延续时间4昼,最大一次降雨量为21毫米。暴雨常在下午或晚间出现。 降雪一般于11月下旬开始,最大一次为20毫米,积雪最大厚度为6厘米,积雪日期一般从11月下旬到次年3月上旬,年平均积雪日数为21.6日,土壤冰结深度约1米。 1.2.3.3 冰期 每年11月底或12月初行凌,12月底封冻,次年2月底或3月初解冻。冰冻期约2~3个月。冬季行凌初期,多为针状,薄片状冰化闭。流冰速度最大为1.45米/秒,最小为0.95米/秒。春季流冰多为坚硬冰块,冰厚一般为0.2米,最厚可达1米。流冰期一般无过大冰块下泄。 1.2.3.4 风向及风速 本地区春季多风,最大风速为17米/秒,风向多为东北向。 第2章 施工导流设计 2.1 导流方式方案的选择 2.1.1 导流方式的选择 分段围堰法。亦称为分期围堰法,即用围堰将水工建筑物分段、分期维护起来进行施工的方法。所谓分段,就是在空间上将永久建筑物分为若干段进行施工;所谓分期,就是在时间上将导流分为若干时期。分段围堰法一般适用于河床宽、流量大、工期较长的工程,尤其适用于通航河流和冰凌严重的河流。 全段围堰法。即在河床主体工程的上下游各建一道围堰,使水流经河床以外的临时或永久泄水道下泄。主体工程建成或接近建成时,再将临时泄水道封堵。 此工程的河流属于山区河流,河宽较窄,并且在施工期没有通航要求。故选择一次拦断,即全段围堰法。 2.1.2 导流方案的选择 2.1.2.1 过水围堰 即基坑允许过水,其挡水工作情况下的设计标准,一般以枯水期不过水为原则。并且在这个施工时段内,必须完成基坑开挖、处理等事项,还应浇筑一定厚度的混凝土层以保护基础。 如采用此方案,则围堰工程量较小,导流建筑物的费用也较小。但是淹没损失较大。其中包括:基坑排水及清淤费用;围堰及其他建筑物、道路、线路的修理费用;施工机械撤离和返回基坑所需费用;劳动力和机械的窝工损失等;有效施工期缩短而造成的劳动力、机械设备、生产企业规模、临时房屋等多方面费用的增加;以及可能产生的延期投产损失等。因此,根据技术经济比较之后,认为采用过水围不比高水围堰有明显的优势。另外,因本河流为多砂河流,其泥沙问题还需专门研究。 2.1.2.2 不过水围堰 分为挡枯水期洪水和挡全年洪水。 ①挡枯水期洪水不过水围堰,即基坑内的主体建筑物可以在一个枯水期内抢修至拦洪高程以上,围堰仅在枯水期内运用。故高度可降低,经济效益显著。