介绍: 1.1空间解析几何 . 向量的线性运算;向量的数量积、向量积及混合积;两向量垂直、平行的条件;直线方程;平面方程;平面与平面、直线与直线、平面与直线之间的位置关系;点到平面、直线的距离;球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程;常用的二次曲面方程;空间曲线在坐标面上的投影曲线方程。 1.2微分学 函数的有界性、单调性、周期性和奇偶性;数列极限与函数极限的定义及其性质;无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较极限的四则运算;函数连续的概念;函数间断点及其类型;导数与微分的概念;导数的几何意义和物理意义;平面曲线的切线和法线;导数和微分的四则运算;高阶导数;微分中值定理;洛必达法则;函数的切线及法平面和切平面及切法线;函数单调性的判别;函数的极值;函数曲线的凹凸性、拐点;偏导数与全微分的概念;二阶偏导数;多元函数的极值和条件极值;多元函数的最大、最小值及其简单应用。