介绍: 每年到达地球表面的太阳辐射能为5.57×1018MJ,相当于190万亿吨标准煤,约为目前全世界一次能源消费总量的1.56×104倍。太阳能取之不尽,用之不竭,还具有清洁安全、无需开采和运输等优点。如能利用太阳能制冷,无疑非常有吸引力。但目前太阳能制冷的研究还远不如加热系统。其主要原因是技术和成本要求太高1)。 吸附式制冷的优点吻合了当前能源和环境协调发展的总趋势。固体吸附式制冷可采用太阳能或余热等低品位热源作为驱动热源,不仅缓解电力的紧张供应和能源危机,而且能有效的利用大量的低品位热源。另外,吸附式制冷不采用氯氟烃类制冷剂,无CFCS问题,也无温室效应作用,是一种环境友好型制冷方式。从20世纪70年代中期以来,吸附式制冷受到重视研究不断深化。 与蒸气压缩式制冷系统相比,吸附式制冷具有结构简单,一次性投资少,运行费用低,使用寿命长,无噪音,无环境污染,能有效利用低品位热源等一系列优点;与吸收式制冷系统相比,吸附式制冷系统不存在结晶和分馏问题,且能用于震动,倾颠或旋转等场合。 两床连续型吸附式制冷系统主要由两部分组成。第一部分包括两个吸附床(解吸床和吸附床),两床的功能相当于传统制冷中的压缩机。解吸态床向冷凝器排放高温高压的制冷剂蒸气,吸附床则吸附蒸发器中低温低压的蒸气,使制冷剂蒸气在解吸床中不断蒸发制冷。因此吸附式制冷系统设计的核心是吸附床,它的性能好坏直接影响了整个系统的功能。第二部分包括冷凝器,蒸发器及流量调节阀,冷却水系统和冷冻水系统,与普通的制冷系统相类似。从解吸态床解吸出来的高温高压的制冷剂蒸气在冷凝器中被冷凝后,经过流量调节阀,变成低温低压的液体,进入蒸发器蒸发制冷,被蒸发的制冷剂蒸气重新被吸附态床吸收。